Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer.

Identifieur interne : 000026 ( Main/Exploration ); précédent : 000025; suivant : 000027

Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer.

Auteurs : Krista L. Plett [Australie] ; Vasanth R. Singan [États-Unis] ; Mei Wang [États-Unis] ; Vivian Ng [États-Unis] ; Igor V. Grigoriev [États-Unis] ; Francis Martin [France] ; Jonathan M. Plett [Australie] ; Ian C. Anderson [Australie]

Source :

RBID : pubmed:31729063

Abstract

Forest trees are able to thrive in nutrient-poor soils in part because they obtain growth-limiting nutrients, especially nitrogen (N), through mutualistic symbiosis with ectomycorrhizal (ECM) fungi. Addition of inorganic N into these soils is known to disrupt this mutualism and reduce the diversity of ECM fungi. Despite its ecological impact, the mechanisms governing the observed effects of elevated inorganic N on mycorrhizal communities remain unknown. We address this by using a compartmentalized in vitro system to independently alter nutrients to each symbiont. Using stable isotopes, we traced the nutrient flux under different nutrient regimes between Eucalyptus grandis and its ectomycorrhizal symbiont, Pisolithus albus. We demonstrate that giving E. grandis independent access to N causes a significant reduction in root colonization by P. albus. Transcriptional analysis suggests that the observed reduction in colonization may be caused, in part, by altered transcription of microbe perception genes and defence genes. We show that delivery of N to host leaves is not increased by host nutrient deficiency but by fungal nutrient availability instead. Overall, this advances our understanding of the effects of N fertilization on ECM fungi and the factors governing nutrient transfer in the E. grandis-P. microcarpus interaction.

DOI: 10.1111/nph.16322
PubMed: 31729063


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer.</title>
<author>
<name sortKey="Plett, Krista L" sort="Plett, Krista L" uniqKey="Plett K" first="Krista L" last="Plett">Krista L. Plett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753</wicri:regionArea>
<wicri:noRegion>2753</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Singan, Vasanth R" sort="Singan, Vasanth R" uniqKey="Singan V" first="Vasanth R" last="Singan">Vasanth R. Singan</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Mei" sort="Wang, Mei" uniqKey="Wang M" first="Mei" last="Wang">Mei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ng, Vivian" sort="Ng, Vivian" uniqKey="Ng V" first="Vivian" last="Ng">Vivian Ng</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Martin, Francis" sort="Martin, Francis" uniqKey="Martin F" first="Francis" last="Martin">Francis Martin</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, Champenoux, 54280, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, Champenoux, 54280</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Plett, Jonathan M" sort="Plett, Jonathan M" uniqKey="Plett J" first="Jonathan M" last="Plett">Jonathan M. Plett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753</wicri:regionArea>
<wicri:noRegion>2753</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Ian C" sort="Anderson, Ian C" uniqKey="Anderson I" first="Ian C" last="Anderson">Ian C. Anderson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753</wicri:regionArea>
<wicri:noRegion>2753</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31729063</idno>
<idno type="pmid">31729063</idno>
<idno type="doi">10.1111/nph.16322</idno>
<idno type="wicri:Area/Main/Corpus">000050</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000050</idno>
<idno type="wicri:Area/Main/Curation">000050</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000050</idno>
<idno type="wicri:Area/Main/Exploration">000050</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer.</title>
<author>
<name sortKey="Plett, Krista L" sort="Plett, Krista L" uniqKey="Plett K" first="Krista L" last="Plett">Krista L. Plett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753</wicri:regionArea>
<wicri:noRegion>2753</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Singan, Vasanth R" sort="Singan, Vasanth R" uniqKey="Singan V" first="Vasanth R" last="Singan">Vasanth R. Singan</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Mei" sort="Wang, Mei" uniqKey="Wang M" first="Mei" last="Wang">Mei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ng, Vivian" sort="Ng, Vivian" uniqKey="Ng V" first="Vivian" last="Ng">Vivian Ng</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Martin, Francis" sort="Martin, Francis" uniqKey="Martin F" first="Francis" last="Martin">Francis Martin</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, Champenoux, 54280, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, Champenoux, 54280</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Plett, Jonathan M" sort="Plett, Jonathan M" uniqKey="Plett J" first="Jonathan M" last="Plett">Jonathan M. Plett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753</wicri:regionArea>
<wicri:noRegion>2753</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Ian C" sort="Anderson, Ian C" uniqKey="Anderson I" first="Ian C" last="Anderson">Ian C. Anderson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753</wicri:regionArea>
<wicri:noRegion>2753</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Forest trees are able to thrive in nutrient-poor soils in part because they obtain growth-limiting nutrients, especially nitrogen (N), through mutualistic symbiosis with ectomycorrhizal (ECM) fungi. Addition of inorganic N into these soils is known to disrupt this mutualism and reduce the diversity of ECM fungi. Despite its ecological impact, the mechanisms governing the observed effects of elevated inorganic N on mycorrhizal communities remain unknown. We address this by using a compartmentalized in vitro system to independently alter nutrients to each symbiont. Using stable isotopes, we traced the nutrient flux under different nutrient regimes between Eucalyptus grandis and its ectomycorrhizal symbiont, Pisolithus albus. We demonstrate that giving E. grandis independent access to N causes a significant reduction in root colonization by P. albus. Transcriptional analysis suggests that the observed reduction in colonization may be caused, in part, by altered transcription of microbe perception genes and defence genes. We show that delivery of N to host leaves is not increased by host nutrient deficiency but by fungal nutrient availability instead. Overall, this advances our understanding of the effects of N fertilization on ECM fungi and the factors governing nutrient transfer in the E. grandis-P. microcarpus interaction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31729063</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>226</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer.</ArticleTitle>
<Pagination>
<MedlinePgn>221-231</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16322</ELocationID>
<Abstract>
<AbstractText>Forest trees are able to thrive in nutrient-poor soils in part because they obtain growth-limiting nutrients, especially nitrogen (N), through mutualistic symbiosis with ectomycorrhizal (ECM) fungi. Addition of inorganic N into these soils is known to disrupt this mutualism and reduce the diversity of ECM fungi. Despite its ecological impact, the mechanisms governing the observed effects of elevated inorganic N on mycorrhizal communities remain unknown. We address this by using a compartmentalized in vitro system to independently alter nutrients to each symbiont. Using stable isotopes, we traced the nutrient flux under different nutrient regimes between Eucalyptus grandis and its ectomycorrhizal symbiont, Pisolithus albus. We demonstrate that giving E. grandis independent access to N causes a significant reduction in root colonization by P. albus. Transcriptional analysis suggests that the observed reduction in colonization may be caused, in part, by altered transcription of microbe perception genes and defence genes. We show that delivery of N to host leaves is not increased by host nutrient deficiency but by fungal nutrient availability instead. Overall, this advances our understanding of the effects of N fertilization on ECM fungi and the factors governing nutrient transfer in the E. grandis-P. microcarpus interaction.</AbstractText>
<CopyrightInformation>© 2019 The Authors New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Plett</LastName>
<ForeName>Krista L</ForeName>
<Initials>KL</Initials>
<Identifier Source="ORCID">0000-0001-6422-3754</Identifier>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singan</LastName>
<ForeName>Vasanth R</ForeName>
<Initials>VR</Initials>
<Identifier Source="ORCID">0000-0002-9983-5707</Identifier>
<AffiliationInfo>
<Affiliation>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Mei</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-3240-7994</Identifier>
<AffiliationInfo>
<Affiliation>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ng</LastName>
<ForeName>Vivian</ForeName>
<Initials>V</Initials>
<Identifier Source="ORCID">0000-0001-8941-6931</Identifier>
<AffiliationInfo>
<Affiliation>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grigoriev</LastName>
<ForeName>Igor V</ForeName>
<Initials>IV</Initials>
<Identifier Source="ORCID">0000-0002-3136-8903</Identifier>
<AffiliationInfo>
<Affiliation>US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>Francis</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0002-4737-3715</Identifier>
<AffiliationInfo>
<Affiliation>INRA, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, Champenoux, 54280, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Plett</LastName>
<ForeName>Jonathan M</ForeName>
<Initials>JM</Initials>
<Identifier Source="ORCID">0000-0003-0514-8146</Identifier>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Anderson</LastName>
<ForeName>Ian C</ForeName>
<Initials>IC</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">ectomycorrhizal (ECM) fungi</Keyword>
<Keyword MajorTopicYN="Y">nitrogen deposition</Keyword>
<Keyword MajorTopicYN="Y">nutrient trading</Keyword>
<Keyword MajorTopicYN="Y">stable isotope tracing</Keyword>
<Keyword MajorTopicYN="Y">transcriptomic analysis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31729063</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16322</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Albarracín MV, Six J, Houlton BZ, Bledsoe CS. 2013. A N fertilization field study of C-13 and N-15 transfers in ectomycorrhizas of Pinus sabiniana. Oecologia 173: 1439-1450.</Citation>
</Reference>
<Reference>
<Citation>Averill C, Dietze MC, Bhatnagar JM. 2018. Continental-scale N pollution is shifting forest mycorrhizal associations and soil C stocks. Global Change Biology 24: 4544-4553.</Citation>
</Reference>
<Reference>
<Citation>Balzergue C, Puech-Pagès V, Bécard G, Rochange SF. 2011. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany 62: 1049-1060.</Citation>
</Reference>
<Reference>
<Citation>Bidartondo MI, Ek H, Wallander H, Söderström B. 2001. Do nutrient additions alter C sink strength of ectomycorrhizal fungi? New Phytologist 151: 543-550.</Citation>
</Reference>
<Reference>
<Citation>Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E et al. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal 64: 1002-1017.</Citation>
</Reference>
<Reference>
<Citation>Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339: 1615-1618.</Citation>
</Reference>
<Reference>
<Citation>Corrales A, Turner BL, Tedersoo L, Anslan S, Dalling JW. 2017. N addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest. Fungal Ecology 27: 14-23.</Citation>
</Reference>
<Reference>
<Citation>Corrêa A, Hampp R, Magel E, Martins- Loução MA. 2011. C allocation in ectomycorrhizal plants at limited and optimal N supply: an attempt at unraveling conflicting theories. Mycorrhiza 21: 35-51.</Citation>
</Reference>
<Reference>
<Citation>Corrêa A, Strasser RJ, Martins-Loução MA. 2008. Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation? Mycorrhiza 18: 413-427.</Citation>
</Reference>
<Reference>
<Citation>Duddridge JA. 1986. The development and ultrastructure of ectomycorrhizas IV. Compatible and incompatible interactions between Suillus grevillei (Klotzsch) Sing. and a number of ectomycorrhizal hosts in vitro in the presence of exogenous carbohydrate. New Phytologist 103: 465-471.</Citation>
</Reference>
<Reference>
<Citation>Ekblad A, Mikusinska A, Agren GI, Menichetti L, Wallander H, Vilgalys R, Bahr A, Eriksson U. 2016. Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and N fertilization. New Phytologist 211: 874-885.</Citation>
</Reference>
<Reference>
<Citation>Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H. 2012. C availability triggers fungal N uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Science, USA 109: 2666-2671.</Citation>
</Reference>
<Reference>
<Citation>Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, Bücking H. 2014. Fungal nutrient allocation in common mycorrhizal networks is regulated by the C source strength of individual host plants. New Phytologist 203: 646-656.</Citation>
</Reference>
<Reference>
<Citation>Field C, Dise NB, Payne RJ, Britton AJ, Emmett BA, Helliwell RC, Hughes S, Jones L, Lees S, Leake JR et al. 2014. The role of N deposition in widespread plant community change across semi-natural habitats. Ecosystems 17: 1-14.</Citation>
</Reference>
<Reference>
<Citation>Fox J, Weisberg S. 2011. An {R} companion to applied regression, 2nd edn. Thousand Oaks, CA, USA: Sage.</Citation>
</Reference>
<Reference>
<Citation>Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA et al. 2004. N cycles: past, present, and future. Biogeochemistry 70: 153-226.</Citation>
</Reference>
<Reference>
<Citation>Garcia K, Delaux P-M, Cope KR, Ané J-M. 2015. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytologist 208: 79-87.</Citation>
</Reference>
<Reference>
<Citation>Hasselquist NJ, Högberg P. 2014. Dosage and duration effects of nitrogen additions on ectomycorrhizal sporocarp production and functioning: an example from two N-limited boreal forests. Ecology and Evolution 4: 3015-3026.</Citation>
</Reference>
<Reference>
<Citation>Hasselquist NJ, Metcalfe DB, Inselsbacher E, Stangl Z, Oren R, Näsholm T, Högberg P. 2016. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. Ecology 97: 1012-1022.</Citation>
</Reference>
<Reference>
<Citation>He X, Xu M, Qiu GY, Zhou J. 2009. Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants. Journal of Plant Ecology 2: 107-118.</Citation>
</Reference>
<Reference>
<Citation>Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ. 2011. Long-term change in the N cycle of tropical forests. Science 334: 664-666.</Citation>
</Reference>
<Reference>
<Citation>Högberg MN, Briones MJI, Keel SG, Metcalfe DB, Campbell C, Midwood AJ, Thornton B, Hurry V, Linder S, Näsholm T et al. 2010. Quantification of effects of season and N supply on tree below-ground C transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytologist 187: 485-493.</Citation>
</Reference>
<Reference>
<Citation>Hortal S, Plett KL, Plett JM, Cresswell T, Johansen M, Pendall E, Anderson IC. 2017. Role of plant-fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME Journal 11: 2666-2676.</Citation>
</Reference>
<Reference>
<Citation>Horton BM, Glen M, Davidson NJ, Ratkowsky D, Close DC, Wardlaw TJ, Mohammed C. 2013. Temperate eucalypt forest decline is linked to altered ectomycorrhial communites mediated by soil chemistry. Forest Ecology and Management 302: 329-337.</Citation>
</Reference>
<Reference>
<Citation>Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A et al. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333: 880-882.</Citation>
</Reference>
<Reference>
<Citation>Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12: 357-360.</Citation>
</Reference>
<Reference>
<Citation>Kobae Y, Ohmori Y, Saito C, Yano K, Ohtomo R, Fujiwara T. 2016. Phosphate treatment strongly inhibits new arbuscule development but not the maintenance of arbuscule in mycorrhizal rice roots. Plant Physiology 171: 566-579.</Citation>
</Reference>
<Reference>
<Citation>Lilleskov EA, Fahey TJ, Horton TR, Lovett GM. 2002. Belowground ectomycorrhizal fungal community change over a N deposition gradient in Alaska. Ecology 83: 104-115.</Citation>
</Reference>
<Reference>
<Citation>Lin G, McCormack ML, Ma C, Guo D. 2017. Similar below-ground C cycling dynamics but contrasting modes of N cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytologist 213: 1440-1451.</Citation>
</Reference>
<Reference>
<Citation>Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15: 550.</Citation>
</Reference>
<Reference>
<Citation>McHale L, Tan X, Koehl P, Michelmore RW. 2006. Plant NBS-LRR proteins: adaptable guards. Genome Biology 7: 212.</Citation>
</Reference>
<Reference>
<Citation>Morrison EW, Frey SD, Sadowsky JJ, van Diepen LTA, Thomas WK, Pringle A. 2016. Chronic N additions fundamentally restructure the soil fungal community in a temperature forest. Fungal Ecology 23: 48-57.</Citation>
</Reference>
<Reference>
<Citation>Müller T, Avolio M, Olivi M, Benjdia M, Rikirsch E, Kasaras A, Fitz M, Chalot M, Wipf D. 2007. Nitrogen transport in the ectomycorrhiza association: the Hebeloma cylindrosporum-Pinus pinaster model. Phytochemistry 68: 41-51.</Citation>
</Reference>
<Reference>
<Citation>Myberg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D et al. 2014. The genome of Eucalyptus grandis. Nature 510: 356-362.</Citation>
</Reference>
<Reference>
<Citation>Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN. 2013. Are ectomycorrhizal fungi alleviating or aggravating N limitation of tree growth in boreal forests? New Phytologist 198: 214-221.</Citation>
</Reference>
<Reference>
<Citation>Nilsson LO, Wallander H. 2003. Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to N fertilization. New Phytologist 158: 409-416.</Citation>
</Reference>
<Reference>
<Citation>Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. 2014. Phosphorus and N regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS ONE 10: e0127472.</Citation>
</Reference>
<Reference>
<Citation>Pardo LH, Fenn ME, Goodale CL, Geiser LH, Driscoll CT, Allen EB, Baron JS, Bobbink R, Bowman WD, Clark CM et al. 2011. Effects of N deposition and empirical N critical loads for ecoregions of the United States. Ecological Applications 21: 3049-3082.</Citation>
</Reference>
<Reference>
<Citation>Parrent JL, Morris WF, Vilgalys R. 2006. CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87: 2278-2287.</Citation>
</Reference>
<Reference>
<Citation>Phoenix GK, Emmett BA, Britton AJ, Caporn SJM, Dise NB, Helliwell R, Jones L, Leake JR, Leith ID, Sheppard LJ et al. 2012. Impacts of atmospheric N deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biology 18: 1197-1215.</Citation>
</Reference>
<Reference>
<Citation>Plett JM, Gibon J, Kohler A, Duffy K, Hoegger PJ, Velagapudi R, Han J, Kues U, Grigoriev IV, Martin F. 2012. Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor. Fungal Genetics and Biology 49: 199-209.</Citation>
</Reference>
<Reference>
<Citation>Plett JM, Kohler A, Khachane A, Keniry K, Plett KL, Martin F, Anderson IC. 2015. The effect of elevated C dioxide on the interaction between Eucalyptus grandis and diverse isolates of Pisolithus sp. is associated with a complex shift in the root transcriptome. New Phytologist 206: 1423-1436.</Citation>
</Reference>
<Reference>
<Citation>Plett JM, Martin FM. 2017. Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. The Plant Journal 93: 729-746.</Citation>
</Reference>
<Reference>
<Citation>R Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org/. [accessed 2 December 2018].</Citation>
</Reference>
<Reference>
<Citation>Read DJ, Leake JR, Perez-Moreno J. 2004. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany 82: 1243-1263.</Citation>
</Reference>
<Reference>
<Citation>Rillig MC, Mummey DL. 2006. Mycorrhizas and soil structure. New Phytologist 171: 41-53.</Citation>
</Reference>
<Reference>
<Citation>Rineau F, Shah F, Smits MM, Persson P, Johansson T, Carleer R, Troein C, Tunlid A. 2013. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME Journal 7: 2010-2022.</Citation>
</Reference>
<Reference>
<Citation>Sengupta S, Mukherjee S, Basak P, Majumder AL. 2015. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Frontiers in Plant Science 6: 656.</Citation>
</Reference>
<Reference>
<Citation>Singh P, Zimmerli L. 2013. Lectin receptor kinases in plant innate immunity. Frontiers in Plant Science 4: 124.</Citation>
</Reference>
<Reference>
<Citation>Smakowska-Luzan E, Mott GA, Parys K, Stegmann M, Howton TC, Layehhifard M, Neuhold J, Lehner A, Kong J, Grunwald K et al. 2018. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553: 342.</Citation>
</Reference>
<Reference>
<Citation>Stonor R, Smith S, Manjarrez M, Facelli E, Smith FA. 2014. Mycorrhizal responses in wheat: shading decreases growth but does not lower the contribution of the fungal phosphate uptake pathway. Mycorrhiza 24: 465-472.</Citation>
</Reference>
<Reference>
<Citation>Supek F, Bošnjak M, Škunca N, Šmuc T. 2011. REVIGO summarizes and visualizes long lists of Gene Ontology terms. PLoS ONE 6: e21800.</Citation>
</Reference>
<Reference>
<Citation>Tang D, Wang G, Zhou JM. 2017. Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29: 618-637.</Citation>
</Reference>
<Reference>
<Citation>Toljander JF, Eberhardt U, Taljander YK, Paul LR, Taylor AFS. 2006. Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytologist 170: 873-884.</Citation>
</Reference>
<Reference>
<Citation>Tomm GO, van Kessel C, Slinkard AE. 1994. Bi-directional transfer of nitrogen between alfalfa and bromegrass: short and long term evidence. Plant and Soil 164: 77-86.</Citation>
</Reference>
<Reference>
<Citation>Treseder KK. 2004. A meta-analysis of mycorrhizal responses to N, phosphorus, and atmospheric CO2 in field studies. New Phytologist 164: 347-355.</Citation>
</Reference>
<Reference>
<Citation>Valtanen K, Eissfeller V, Beyer F, Hertel D, Scheu S, Polle A. 2014. Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage. Mycorrhiza 24: 645-650.</Citation>
</Reference>
<Reference>
<Citation>Walder F, van der Heijden MGA. 2015. Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nature Plants 1: 15159.</Citation>
</Reference>
<Reference>
<Citation>Wong JWH, Lutz A, Natera S, Wang M, Ng V, Grigoriev I, Martin F, Roessner U, Anderson IC, Plett JM. 2019. The influence of contrasting microbial lifestyles on the pre-symbiotic metabolite responses of Eucalyptus grandis roots. Frontiers in Ecology and Evolution 7: 10.</Citation>
</Reference>
<Reference>
<Citation>Wu Y, Xun Q, Guo Y, Zhang J, Cheng K, Shi T, He K, Hou S, Gou X, Li J. 2016. Genome-wide expression pattern analyses of the Arabidopsis leucine-rich repeat receptor-like kinases. Molecular Plant 9: 289-300.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Plett, Krista L" sort="Plett, Krista L" uniqKey="Plett K" first="Krista L" last="Plett">Krista L. Plett</name>
</noRegion>
<name sortKey="Anderson, Ian C" sort="Anderson, Ian C" uniqKey="Anderson I" first="Ian C" last="Anderson">Ian C. Anderson</name>
<name sortKey="Plett, Jonathan M" sort="Plett, Jonathan M" uniqKey="Plett J" first="Jonathan M" last="Plett">Jonathan M. Plett</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Singan, Vasanth R" sort="Singan, Vasanth R" uniqKey="Singan V" first="Vasanth R" last="Singan">Vasanth R. Singan</name>
</noRegion>
<name sortKey="Grigoriev, Igor V" sort="Grigoriev, Igor V" uniqKey="Grigoriev I" first="Igor V" last="Grigoriev">Igor V. Grigoriev</name>
<name sortKey="Ng, Vivian" sort="Ng, Vivian" uniqKey="Ng V" first="Vivian" last="Ng">Vivian Ng</name>
<name sortKey="Wang, Mei" sort="Wang, Mei" uniqKey="Wang M" first="Mei" last="Wang">Mei Wang</name>
</country>
<country name="France">
<region name="Grand Est">
<name sortKey="Martin, Francis" sort="Martin, Francis" uniqKey="Martin F" first="Francis" last="Martin">Francis Martin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000026 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000026 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31729063
   |texte=   Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31729063" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020